

Manual Testing

❖ Testing or Software Testing: Try to find the differences between expected and

Actual results, that is called Testing.
OR

comparing the actual behaviour of an application with expected behaviour.

❖ Project & Product: “Project is developed for a single customer on his own requirements by

the software companies and the project will be used by the customer only.”

o “Product is developed for multiple customers on their consolidated requirements by

the software companies and the product will be used by all customers.”

❖ Error, Defect, Bug, Failure: A mistake in coding is called Error, error found by tester is

called Defect, defect accepted by development team then it is called Bug, build does not

meet the requirements then it Is Failure.” ... It is the deviation (Difference) of the customer

requirement.

❖ SDLC (Software Development Life Cycle): These phases may vary form one organization

to another, but purpose is almost all same, that is "Develop and Maintain Quality Software".

Below are the standard phases of SDLC:

SDLC Models: We are going to discuss about three types of models as below:

1. Waterfall Model Oldest Model)

2. V Model

3. Agile Methodologies

❖ Waterfall Model Oldest Model): Waterfall approach was first SDLC Model to be used widely

in market. In "The Waterfall" approach, the whole process of software development is

divided into separate phases. In this Waterfall model the outcome of one phase acts as the

input for the next phase release sequentially.

 It is very simple to understand and use. This type of model is basically used for the

project which is small and there are no uncertain requirements.

Note: Once requirements are finalized then we cannot change the requirements in Waterfall model.

Means requirements are static.

V-Model: It is Verification & Validation model, known as V Model, in this model all development

phases can be integrated with Testing phases.

 The V-model tells how testing activities can be integrated into each phase of the software

development life cycle.

The V- model should be used for small to medium sized projects where requirements are

clearly defined and fixed.

❖ Testing Methodologies:

Black Box Testing: In black-box testing the tester is concentrating on what the software does,

not how it does it. Testers have no knowledge of how the system or component is structured

inside the box. Specification-based testing technique is also known as „black-box “or

input/output driven testing techniques because they view the software as a black-box with

inputs and outputs.

 Black box testing covers both functional and non-functional testing. Functional

testing is concerned with what the system does its features or functions. Non-functional testing

is concerned with examining how well the system does. Non-functional testing like performance,

usability, portability, maintainability, etc.

Below are the black box testing techniques: -

Equivalence partitioning

Boundary value analysis

1. Equivalence partitioning or equivalence class partitioning (ECP): It is a software
testing technique that divides the input data of a application unit into
partitions of equivalent data from which test cases can be derived. So, in the
example below we will test for any value from the valid and invalid classes. So, we
will consider same result for all the values from the Valid/Invalid partition.

2. Boundary Value Analysis (BVA): Boundary testing is the process of testing between
extreme ends or boundaries between partitions of the input values. So in the above
example boundary values will be 0,1,10,11,99,100

❖ White box testing:

“Structure-based testing technique is also known as „white-box‟ or „glass-box‟ testing technique

because here testers require knowledge of how the software is implemented, how it works “

 Developers use -structure based technique in component testing and component integration

testing, especially where there is good tool support for code coverage.”

❖ Grey Box testing:

Grey Box testing is a technique to test an application with to limited test knowledge of the internal

working of an application.”

 Unlike black box testing, where the tester only tests the application's user interface, in grey

box testing, the tester has access to design documents and the database. Having this knowledge, the

tester can better prepare test data and test scenarios.

❖ Software Testing Levels: There are mainly 4 testing levels as below:

❖ I) Unit Testing (Dev team) ii) Integration Testing (Dev team) iii) System Testing iv)

Acceptance Testing

❖ 1. Unit Testing: When we test single module or a piece of code independently that is UNIT

testing. The purpose of unit testing is to validate that each unit of the application works as

designed. Unit testing is done manually as well as automated. Generally, dev team perform

unit testing. There are many tools to perform unit testing like Junit, Nunit, TestNG etc. and

dev team used these tools to perform unit testing.

❖ 2. Integration Testing: When multiple modules or units are developed and tested as a group.

That is called integration testing. The purpose of integration testing is to find out the defects

while interaction between these integrated modules or Units. There are several tools to

perform integration testing like protractor, Jasmine etc. Dev team performs integration

testing.

Ex: Application has 3 modules say 'Login Page', 'Mailbox' and 'Delete emails' and each of

them is integrated logically. So here these modules already tested in Unit testing lets focus

on when Login, Mailbox and Delete emails modules has been integrated. Below are some

high-level integration test cases:

Test

Case ID
Test Case Objective Test Case Description Expected Result

1
Check the interface link between the

Login and Mailbox module

Enter login credentials and click

on the Login button
To be directed to the Mail Box

2
Check the interface link between the

Mailbox and Delete Mails Module

From Mailbox select the email

and click a delete button

Selected email should appear in

the Deleted/Trash folder

Types of Integration testing: There are 4 types of integration testing are below:

1. Big Bang

2. Incremental Approach:

a. Top down

b. Bottom up

c. Sandwich/Hybrid

Big Bang Approach: This is an Integration testing approach in which all the components or modules

are integrated together at once and then tested as a complete unit. This combined set of

components is considered as an entity while testing. If all of the components in the unit are not

completed, the integration process will not execute.

Incremental Approach: In the Incremental Testing approach, testing is done by integrating two or

more modules that are logically related to each other and then tested for proper functioning of the

application. Then the other related modules are integrated incrementally and the process will

continue until all the logically related modules are integrated and tested successfully.

In this approach we have two different methods:

Bottom up

Top down

Stubs and Drivers

Stubs and Drivers refers to replica/dummy of the modules, which acts as a substitute to the
undeveloped or missing modules. Stubs & drivers are specifically developed to meet the
requirements of undeveloped modules and are immensely useful in getting expected results.

Stub: A stub is called from the software component to be tested.

Driver: A driver calls the component to be tested.

Bottom-up Integration Testing: Bottom-up Integration Testing is a strategy in which the lower-
level modules are tested first. These tested modules are further used to perform the testing of
higher-level modules. The process will continue until all the modules at top level are tested.

“We use bottom-up approach when we have idea about detail knowledge of functionality or

feature but we don't have idea about the overall project.”

Top-Down Integration Testing: It is a method in which integration testing starts from top to

bottom. The higher-level modules are tested first and then lower-level modules are tested and

integrated in order to check the application functionality. Basically, Stubs are used for testing if

some modules are not ready.

Advantage and disadvantage: Critical modules are test first on priority and disadvantage is

we may need many stubs to test in this approach.

Sandwich Testing: It is a strategy in which top level modules are tested with lower-level

modules at the same time lower modules are integrated with top modules and tested as a system. It
is a combination of Top-down and Bottom-up approaches therefore it is called Hybrid Integration
Testing. It makes use of both stubs as well as drivers.

System Testing: System Testing means testing the system as a whole. All the
modules/components are integrated in order to verify if the system works as expected or not.
System Testing is done after Integration Testing. This plays an important role in delivering a high-
quality product.

Example: If an application has three modules A, B, and C, then testing done by combining the
modules A & B or module B & C or module A& C is known as Integration testing. Integrating all the
three modules and testing it as a complete system is termed as System testing. It is just an example
let suppose there are around 20 modules and then after performing integration testing we are doing
system testing for all 20 modules.

Example 2: A car manufacturer does not produce the car as a whole car. Each component of the car
is manufactured separately, like seats, steering, mirror, break, cable, engine, car frame, wheels etc.
After manufacturing each item, it is tested independently whether it is working the way it is supposed
to work and that is called Unit testing.
Now, when each part is assembled with another part, that assembled combination is checked if
assembling has not produced any side effect to the functionality of each component and whether
both components are working together as expected and that is called integration testing.
Once all the parts are assembled and the car is ready, it is not ready actually.
The whole car needs to be checked for different aspects as per the requirements defined like if car
can be driven smoothly, breaks, gears, and other functionality working properly, car does not show
any sign of tiredness after being driven for 2500 miles continuously, color of car is generally accepted
and liked, car can be driven on any kind of roads like smooth and rough, sloppy and straight, etc and
this whole effort of testing is called System Testing and it has nothing to do with integration testing.
 So in our application we also needs to check different aspects like, Installation of application,
Performance of application, Usability of application, responsiveness etc.

These are some focus areas for System testing as below:

1. External interfaces
2. Multiprogram and complex functionalities
3. Security
4. Recovery
5. Performance
6. Operator and user’s smooth interaction with the system
7. Installation
8. Documentation
9. Usability
10. Load/Stress

Acceptance Testing: Acceptance testing is when the application has met the customer requirements
or not. The main purpose of acceptance testing is checking the system compliances with the
business requirements. And verify that application met the required criteria for delivery to end user.

There are various forms of acceptance testing:

• User acceptance Testing (UAT)

• Alpha Testing

• Beta Testing

User Acceptance Testing (UAT): It is a type of testing performed by the end user or the client to
verify/accept the application/Release before moving the code to the production environment. UAT is
done in the final phase of testing after functional, integration and system testing are done.

Alpha Testing: Alpha Testing is a type of acceptance testing; performed to identify all possible issues
and bugs before releasing the final product to the end users. Alpha testing is carried out by the testers
who are internal employees of the organization.

Beta Testing: Beta Testing is performed by "real users" of the software application in "real
environment" and it can be considered as a form of external User acceptance testing It is the final
test before shipping a product to the customers. Direct feedback from customers is a major advantage
of Beta Testing. This testing helps to test products in customer's environment.

Types of Software Testing: There are 2 types of software testing are below:

❖ Functional testing

❖ Non-functional testing

1. Functional Testing: This is normal testing which we perform by analysing the FR (Functional
requirements) or BR (Business Requirements). FR and BR may be described in the form of
User Stories.

Functional Testing is a testing technique that is used to test the features/functionality of the
Software”.

In functional testing we include Smoke, Sanity, Regression, Re-testing, End to End testing.

2. Non-Functional Testing: Non-functional testing is a type of testing to check non-functional

aspects (performance, usability, reliability, etc.) of an application. These are the types of non-
Functional testing.

User Interface Testing: “Graphical User Interface (GUI) testing is checking the application design of
an application”. Ex: Required/Optional, Fields Align, Lengths, Progress Bars, Scroll Bars, Alignments,
etc.

Usability Testing: “In usability testing basically the testers test the ease with which the user interfaces
can be used. It tests that whether the application is user-friendly or not.

“Usability Testing tests the following features of the software.

– How easy it is to use the software.

 – How easy it is to learn the software.

 – How convenient is the software to end user.

Stress Testing: “It is a form of testing that is used to determine the stability of a given system, Stress
testing involves testing beyond normal operational capacity, often to a breaking point, in order to
observe the results. “Stress testing is a generic term used to describe the process of putting a system
through stress.

Load Testing: “Load testing is performed to determine a system’s behaviour under both normal and
at peak conditions. “A load test is usually conducted to understand the behaviour of the application

under a specific expected load. E.g. If the number of users are increased then how much CPU, memory
will be consumed, what is the network and bandwidth response time.

Performance Testing: “Performance testing is testing that is performed, to determine how fast some
aspect of a system performs under a particular workload. “It can serve different purposes like it can
demonstrate that the system meets performance criteria.

Localization Testing: “Localization translates the product UI and occasionally changes some initial
settings to make it suitable for another region.” Localization testing checks the quality of a product's
localization for a particular target culture/locale. The test effort during localization testing focuses on:
- Areas affected by localization, such as UI and content - Culture/locale-specific, language-specific,
and region-specific areas

Globalization Testing: “Globalization Testing is testing process to check whether software can
perform properly in any locale or culture & functioning properly with all types of international inputs
and steps to effectively make your product truly global.”

This type of testing validates whether the application is capable for using all over the world and to
check whether the input accepts all the language texts. Ex: Let’s see another example of a Zip code
field in Sign up form: - For globalized, it should allow to enter alphanumeric inputs - For localized
(country like INDIA), it should allow only numbers in input field.

Security Testing: “Security testing is basically to check that whether the application or the product is
secured or not. “

Compatibility Testing:” Compatibility Testing ensure compatibility of the application built with
various other objects such as other web browsers, hardware platforms, operating systems etc.” This
type of testing helps find out how well a system performs in a particular environment that includes
hardware, network, operating system, and other software etc.

Ex: Browser Compatibility Testing, OS Compatibility Testing

❖ Change-related Testing (CR): When changes are made to the existing functionality, either to
correct a defect or because of new or changing functionality, testing should be done to
confirm that the changes have corrected the defect or implemented the functionality
correctly and are not impacting to other functionalities.

❖ Software Testing Techniques: There are 2 types of test design techniques:

1. Static Testing Technique 2. Dynamic Testing Technique

2.

3.

4.

Experience Based Testing:

1. Error guessing: It is a experienced based testing technique in which a experienced person
try to guess the problem. And where the Test Analyst uses his/her experience to guess the
problematic areas of the application. This technique necessarily requires skilled and
experienced testers.

2. Exploratory Testing: EXPLORATORY TESTING is a type of software testing where Test cases
are not created in advance, but testers check system on the fly. They may note down ideas
about what to test before test execution. The focus of exploratory testing is to explore the as
many things they can explore in the application.

Software Testing Life Cycle: There are different phases in testing life cycle which we follow:

a. Requirement Analysis

b. Test Planning

c. Test case design and development

d. Test Environment setup

e. Test case execution

f. Test closer

When we get a defect first time then it is in new state. After that we basically check 3 things like is it
valid or not? If it is not valid then Dev team will reject the bug. If it is valid then again, we will check it
is in scope or not? If is not in scope then we will mark it as deferred. If it is in scope then again, we
will check last thing that is it already raised by someone or not? If it already raised by someone then
we will mark it as duplicate if not raised by someone then finally we will assign the defect to the
developer or someone from dev team who is working on the story. Now bug fixing process will start.
Once defect is fixed then we do Re-testing on the defect if re-testing fails then again, we will re-
assign that defect to the developer if Re-testing pass then we will close the defect.

Priority: It indicates to the scheduling. means How soon a bug should be fixed.

Severity: It indicates to the functionality, means seriousness of the defect on the product
functionality.

High severity/ High priority: Let suppose there is Bank ATM machine. And a person is doing ATM
transaction for the same bank for which he is holding the debit card. But He is getting charged 20
rupees/transaction. Which is against the bank policy. SO High severity and High priority will be here
because these are lot of transactions are happening within an hour.

High severity/Low priority: Let suppose there is a banking application. and bank is giving 2
rupees/1000 rupees as interest to their customers. but bank found that there is a bug and due to
that bug bank is giving 4 rupees/1000 rupees to their customers at the end day of the last month of
the year. So due to the bug interest is going double and it cost very high to the bank. SO severity will
be high and priority will be low because it happens last day of the year and next day is 1st day of the
next year so we have lot of time to fix the issue.

Low severity/High priority: Let suppose there is a mistake in company Logo. so Severity will be low
because there is no functionalities impact on the application and priority will be high because it
create the question mark on the company image.

Low severity/Low priority: Let suppose there is just spelling mistake inside the application or you can
say any little cosmetic UI Issue.

Difference between Test case and Test scenario: Test case consist of a set of input values, execution
precondition, expected results and executed post condition, developed to cover
certain test condition. While Test scenario is nothing but a test procedure. ... The scenarios are
derived from used cases

A Test Scenario is any functionality that can be tested. It is also called Test Condition
or Test Possibility. Test scenario can be a single or a group of test cases.

Test Case sample:

We can prepare the test scenarios for following list of items:

ATM

PEN

LIFT

SIGN-UP PAGE

WHATSAPP

FACEBOOK AFTER LOGIN

CAPTCHA CODE

CHAIR

BLUETOOTH (V.IMP)

FAN

COFEE MACHINE

DATE FIELD

FLIGHT RESERVATION, HOTEL RESERVATION

Entry Criteria: Entry Criteria gives the Pre-condition items that must be completed.

Exit Criteria: Exit Criteria is defining the items that must be completed before giving the testing
closer.

Test Planning: In this phase the Test Manager or Test Lead prepares the Test Plan and Test strategy
documents.

Activities in this phase:

Test plan ID

Test environment
Features to be tested/Not tested
Entry/Exit criteria
Status
Types of testing

Brief Intro

Strategy defines what approach should be there for testing and Test plan has all the details how
those approaches will be executed in a proper planned way. They both go hand in hand.

Test plan Vs Test Strategy: Generally, it doesn’t matter which comes first. Test planning
document is a combination of strategy plugged with overall project plan. According to IEEE
Standard 829-2008, strategy plan is a sub item of test plan.

Every organization has their own standards and processes to maintain these documents.
Some organizations include strategy details in test plan itself. Some organizations list
strategy as a subsection in testing plan but details is separated out in different test strategy
document.

 Ex: Test plan gives the information of who is going to test at what time. For example:
Module 1 is going to be tested by “X tester”. If tester Y replaces X for some reason, the test
plan must be updated.

On the contrary, test strategy is going to have details like – “Individual modules are to be
tested by test team members. “In this case, it does not matter who is testing it- so it’s
generic and the change in the team member does not have to be updated, keeping it static.
Deliverables: Test Plan with estimation

Test strategy contains:

a. Scope and objective
b. Business Issues:
c. Testing approach: What type of testing is needed?
d. Defect tracking approach:
e. Risks:

How many environments do we have?
“A Typical project can have following environments”
- Dev
- QA
- Pre-Production
- Production

Note: On high level we can have above 4 environments in any company. But it may depend upon
company to company.

Explain what is Test Metric is software testing and what information does it contains?

Ans: In software testing, Test Metric is referred to standard of test measurement. They are the
statistics narrating the structure or content of a program. It contains information like

• Total test
• Test run

• Test passed
• Test failed
• Tests deferred
• Test passed the first time
• How many defects are existed within the module?
• How many test cases are executed per person?
• What is the Test coverage %?

❖ Test Data: “In order to test a software application you need to enter some data for
testing most of the features. Any such specifically identified data which is used while
test execution is known as test data.”

❖ Defect Slippage Ratio: Number of defects slipped (reported from production) v/s
number of defects reported during execution.

Example: Customer filed defects are 15, total defect found while testing are 150, total
number of invalid defects are 10. So, Slippage Ratio is [15/ (150-10)] X 100 = 10.71%

❖ DRE (Defect Removal Efficiency): The defect removal efficiency (DRE) gives a measure of
the development team ability to remove defects prior to release. It is calculated as a ratio of
defects resolved to total number of defects found. It is typically measured prior and at the
moment of release.

For example, suppose that 100 defects were found during QA/testing stage and 84 defects were
resolved by the development team at the moment of measurement. The DRE would be calculated
as 84 divided by 100 = .84*100 →84%

❖ Mock ups: In Design phase or for requirement phase, some sample screens replica
of actual application will be provided for team.

❖ Release notes: Release notes is a document which will be prepared by the dev team
during the release time. It will be delivered to the customers which contains the
technical information about changes addressed in the current release.

❖ Test Summary Report: Sample format is below:

❖ Status Call: Status call will happen daily / weekly / monthly based on
client/company rules where we will discuss about project status.

❖ MOM(Minutes of Meeting): Minutes of Meeting are the written or recorded
documentation that is used to inform attendees and non-attendees of the
happenings during the meeting.

MOM Contains: The names of the participants, the agenda items covered, decisions made
by the participants, the follow-up actions committed to by participants, due dates for the
completion of commitments, and any other events or discussions worth documenting for
future review or history.

❖ Test coverage: It is defined as a technique which determines whether our test cases
are covering the application code and how much code is exercised when we run
those test cases.
If there are 10 requirements and 100 tests created and if 90 tests are executed, What
is Use Case Testing? Ans. Validating a Software to confirm whether it is developed as per the
use cases or not is called use case testing.

❖ Defect Age: The time gap between date of detection & date of closure of a defect.
❖ Showstopper Defect: A defect which is not permitting to continue further testing is called

Showstopper Defect
❖ Test Closure: It is the last phase of the STLC, Where the management prepares various test

summary reports that explains the complete statistics of the project based on the testing

carried out then test coverage is 90%. Now, based on this metric, testers can create
additional test cases for remaining tests.

❖ Test Harness:Test Harness is configuring a set of tools and test data to test an application in
various conditions, which involves monitoring the output with expected output for
correctness.

❖ Fuzz Testing: Fuzz testing is a black box testing technique which uses a random bad
data to attack a program to check if anything breaks in the application.

❖ Gorilla Testing: Gorilla Testing, a technique in which repetitive Manual Testing process,
which a tester would have done several times before, is done again to test the robustness
of the system.

A module can be tested over a hundred times, and in the same manner. So, Gorilla
Testing is also known as “Frustrating Testing”.

❖ Monkey Testing: Monkey testing is a technique in software testing where the user tests the
application by providing random inputs and checking the behaviour (or trying to crash the
application). Mostly this technique is done automatically where the user enters any random
invalid inputs and checks the behaviour.

❖ Main Roles in Agile:

What is Ad Hoc testing?
Ans: It is a testing phase where the tester tries to break the system by randomly trying the system’s
functionality. It include negative testing as well.

What is bug leakage and bug release?

Ans: Bug release is when software or an application is handed over to the testing team knowing that
the defect is present in a release. During this the priority and severity of bug is low, as bug can be
removed before the final handover.

Bug leakage is something, when the bug is discovered by the end users or customer, and missed by
the testing team to detect, while testing the software.

RTM: It is a document in which we Map and trace our requirements with the Test cases.

Smoke Testing:

When we get a new software build first time from dev team then we perform Smoke testing.
Actually, we do smoke testing on un-stable build. in this we have fixed set of test cases, if all test
cases are passed then we accept the build and do further normal testing. If any of test case is getting
fail then we reject the build and send it back to the development team. That is called Smoke testing.

Sanity Testing: We do sanity on stable build. when a build has clear multiple rounds of regression
testing then we perform Sanity testing. Let suppose We raised a bug and there is new minor
functionality is being added and there is some integration is also happening. Now first we will do re-
testing for the raised defects and then we will test that new added functionality. Now we will
perform a Sanity check on that build to test the impacts due to the bug fixing or integration things.
means due to the changes or integration other major functionalities are working fine or not as
earlier. That is called Sanity check. In this also we have fixed set of test cases.

Regression Testing: “We do test to confirm that a recent code change has not affected the existing
feature functionality. That is regression testing. Let say you got an under story to perform testing
and you did analysis on that story and you found that this feature is making impact on other
integrated module or any existing functionality as well so in that case we’ll write test cases for our
new functionality which is going to be implemented based on the user story. And apart from that
we’ll include some more already written test cases for regression testing to test the existing
functionality which may be impacted due to new changes. And we’ll execute them once code is
deployed in QA env. So, regression testing is nothing, but it is full or partial selection of already
executed test cases which are re-executed to ensure that existing functionality is working fine or not.

And, we perform regression testing before each release.

• Defect clustering: When a small number of modules contains most of the bugs detected or
show the most operational failures. Pesticide Paradox: If the same tests are repeated over
and over again, eventually the same test cases will no longer find new bugs.

Pesticide paradox: Let’s say you are testing an application. You have written a set of test cases.

Now you run one cycle of testing. You find few bugs and report them to the development team.
Development team fixes the bugs and reverts to you with the updated code. You again execute the
same set of test cases. This time you find that few of the bug were still not fixed and you report that
back to the development team. They work on it and send an update to you. Once again, you execute
the same set of test cases and don't find any bugs.

Now in a new release some changes were made in the application. You run the same set of test
cases and they all pass. But what you miss here is the new bugs that may have introduced when the
fix and new changes were applied. The old set of test cases are incapable of identifying these new
bugs.

This is called Pesticide Paradox. To avoid this, you need to update your test cases with each cycle
and add new cases to the old set.

Defect Clustering:

When a small number of modules contains most of the bugs detected or show the most operational

failures.

Pesticide Paradox:

If the same tests are repeated over and over again, eventually the same test cases will no longer find
new bugs. This is what pesticide paradox is referring to.

Defect Triage: Defect triage is a process where each bug is prioritized based on its severity,
frequency, risk, etc. Triage term is used in the Software testing / QA to define the severity and
priority of new defects. The goal of Bug Triage is to evaluate, prioritize and assign the resolution of
defects. The team needs to validate severities of the defect, make changes as per need, finalize
resolution of the defects. Here, are some important factors that decide the frequency of Defect
Triage Meetings:

These Important factors are:

• As per the project schedule
• Number of defects in the system
• Impact on schedules of team members' availability
• Overall project health

Who are the mandatory and other participants of 'Defect Triage'?

Mandatory Participants

Below project members always take part in Defect Triage Meetings.

• Project Manager
• Test Team Leader
• Technical Lead
• Development Team Leader

Optional Participants

• Developers
• Testers
• Business Analyst

❖ What is Hot Fix: A small piece of code developed to correct a major software bug or
fault and released as quickly as possible. hotfixes address very specific issues
like: Adding a new feature, bug, or security fix. Changing database schema

• Patch - Publicly released update to fix a known bug/issue.
• Hotfix - update to fix a very specific issue, not always publicly released.

❖ Bug Masking: A masked bug is an existing error that has not yet caused a failure
just because another error has prevented that piece of the code from being
performed. The main feature of these bugs is that they hide other system
defects.

❖ Latent Defect: A latent bug is an existing error that has not yet caused a failure
because the accurate set of conditions was never met. Such bugs can stay in a
system for a long time and be detected in different software releases.

❖ Golden Defect: The bug that is occurred in every instance of the application with
severity level high and with high priority. These bugs can affect the critical
functionality of the software app

❖ QA Sign-off & Conditional Sign-off
• QA Sign-Off: Means your test cases & test execution results are reviewed. And you are

saying that testing is completed and ready to deliver. So Sign-off is a way to say that you
have completed any task that could be test execution, Test case writing any other
document.

• Conditional QA Sign-off:
• The conditional sign-off is ultimately a way for you to accept exiting the testing, but with a

list of agreed conditions to move forward.

• When the application doesn’t meet the exit criteria, the QA can do the Conditional Sign Off.
For instance, when the application development exercises cross the cut-off time/deadline,
and the tester has not finished the testing, they can do the Conditional Sign Off after speaking
with their Test Manager.

OR

• Apart from this QA, do conditional sign off when the application does not meet the exit
criteria. The conditional sign-off is ultimately a way for you to accept exiting the testing, but
with a list of agreed conditions to move forward.

Agile: Important Key terminologies:

Email: himanshusingh309@gmail.com

